85 research outputs found

    Dispersal in dendritic networks: Ecological consequences on the spatial distribution of population densities

    Full text link
    1. Understanding the consequences of spatial structure on ecological dynamics is a central theme in ecology. Recently, research has recognised the relevance of river and river-analogue network structures, because these systems are not only highly diverse but also rapidly changing due to habitat modifications or species invasions. 2. Much of the previous work on ecological and evolutionary dynamics in metapop- ulations and metacommunities in dendritic river networks has been either using comparative approaches or was purely theoretical. However, the use of micro- cosm experiments provides the unique opportunity to study large-scale questions in a causal and experimental framework. 3. We conducted replicated microcosm experiments, in which we manipulated the spatially explicit network configuration of a landscape and addressed how linear versus dendritic connectivity affects population dynamics, specifically the spatial distribution of population densities, and movement behaviour of the protist model organism Tetrahymena pyriformis. We tracked population densities and individual-level movement behaviour of thousands of individuals over time. 4. At the end of the experiment, we found more variable population densities between patches in dendritic networks compared to linear networks, as pre- dicted by theory. Specifically, in dendritic networks, population densities were higher at nodes that connected to headwaters compared to the headwaters themselves and to more central nodes in the network. These differences follow theoretical predictions and emerged from the different network topologies per se. These differences in population densities emerged despite weakly density- dependent movement. 5. We show that differences in network structure alone can cause characteristic spatial variation in population densities. While such differences have been postu- lated by theoretical work and are the underlying precondition for differential dis- persal evolution in heterogeneous networks, our results may be the first experimental demonstration thereof. Furthermore, these population-level dynam- ics may affect extinction risks and can upscale to previously shown metacommu- nity level diversity dynamics. Given that many species in natural river systems exhibit strong spatiotemporal patterns in population densities, our work suggests that abundance patterns should not only be addressed from a local environmental perspective, but may be the outcome of processes that are inher- ently driven by the respective habitat network structure

    Metaecosystem dynamics drive community composition in experimental, multi‐layered spatial networks

    Full text link
    Cross‐ecosystem subsidies are studied with a focus on resource exchange at local ecosystem boundaries. This perspective ignores regional dynamics that can emerge via constraints imposed by the landscape, potentially leading to spatially‐dependent effects of subsidies and spatial feedbacks. Using miniaturized landscape analogues of river dendritic and terrestrial lattice spatial networks, we manipulated and studied resource exchange between the two whole networks. We found community composition in dendritic networks depended on the resource pulse from the lattice network, with the strength of this effect declining in larger downstream patches. In turn, this spatially‐dependent effect imposed constraints on the lattice network with populations in that network reaching higher densities when connected to more central patches in the dendritic network. Consequently, localized cross‐ecosystem fluxes, and their respective effects on recipient ecosystems, must be studied in a perspective taking into account the explicit spatial configuration of the landscape

    Selection on growth rate and local adaptation drive genomic adaptation during experimental range expansions in the protist Tetrahymena thermophila

    Full text link
    1. Populations that expand their range can undergo rapid evolutionary adaptation of life-history traits, dispersal behaviour and adaptation to the local environment. Such adaptation may be aided or hindered by sexual reproduction, depending on the context. 2. However, few empirical and experimental studies have investigated the genetic basis of adaptive evolution during range expansions. Even less attention has been given to the question how sexual reproduction may modulate such adaptive evolution during range expansions. 3. We here studied genomic adaptation during experimental range expansions of the protist Tetrahymena thermophila in landscapes with a uniform environment or a pH gradient. Specifically, we investigated two aspects of genomic adaptation during range expansion. First, we investigated adaptive genetic change in terms of the underlying numbers of allele frequency changes from standing genetic variation and de novo variants. We focused on how sexual reproduction may alter this adaptive genetic change. Second, we identified genes subject to selection caused by the expanding range itself, and directional selection due to the presence or absence of the pH gradient. We focused this analysis on alleles with large frequency changes that occurred in parallel in more than one population to identify the most likely candidate targets of selection. 4. We found that sexual reproduction altered adaptive genetic change both in terms of de novo variants and standing genetic variation. However, sexual reproduction affected allele frequency changes in standing genetic variation only in the absence of long-distance gene flow. Adaptation to the range expansion affected genes involved in cell divisions and DNA repair, whereas adaptation to the pH gradient additionally affected genes involved in ion balance and oxidoreductase reactions. These genetic changes may result from selection on growth and adaptation to low pH. 5. In the absence of gene flow, sexual reproduction may have aided genetic adaptation. Gene flow may have swamped expanding populations with maladapted alleles, thus reducing the extent of evolutionary adaptation during range expansion. Sexual reproduction also altered the genetic basis of adaptation in our evolving populations via de novo variants, possibly by purging deleterious mutations or by revealing fitness benefits of rare genetic variants

    Dispersal syndromes in challenging environments: A cross‐species experiment

    Full text link
    Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness. Our proof-of-concept metacommunity model further reveals cascading effects of context-dependent syndromes on the local and regional organisation of functional diversity. Our study opens new avenues to advance our understanding of the functioning of spatially structured populations, communities and ecosystems. Keywords: context-dependent dispersal; dispersal strategy; distributed experiment; predation risk; resource limitatio

    Dispersal: from “neutral” to a state- and context-dependent view

    No full text
    A recommendation – based on reviews by Two anonymous reviewers – of the article: Sevchik, A., Logan, C. J., McCune, K. B., Blackwell, A., Rowney, C. and Lukas, D. (2021) Investigating sex differences in genetic relatedness in great-tailed grackles in Tempe, Arizona to infer potential sex biases in dispersal. EcoEvoRxiv, osf.io/t6beh, ver. 5 peer-reviewed and recommended by Peer community in Ecology. doi: https://doi.org/10.32942/osf.io/t6be

    From cognition to range dynamics – and from preregistration to peer-reviewed preprint

    No full text
    L31-34: “by allowing... by making... by exerting...” a little bit hard to follow, rephrase? I would add the sample size in the abstract becauseit is important to know it to understand the conclusion of the study . And I think references can be removed from the abstract, it will make space for a sentence or two about the touchscreen task maybe

    dispersal_polymorphisms: code associated with Fronhofer et al. 2011 Evolution

    No full text
    code associated with Fronhofer et al. 2011 Evolutio

    Evolution of density-dependent movement during experimental range expansions

    Full text link
    Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general
    • 

    corecore